
Naval Command, AD-A258 164
Control and Ocean San Diego, CA
Surveillance Center RDT&E Division 92152-5000 M

Technical Document 2381
September 1992

Applications
Development on the
Intel iWarp System

J. Z. Lou

DTIRLICT9h.

92-30044IOMNIIIl -i|

Technical Document 2381
September 1992

Applications Development on the
Intel iWarp System

J. Z. Lou

NAVAL COMMAND, CONTROL AND
OCEAN SURVEILLANCE CENTER

RDT&E DIVISION
San Diego, California 92152-5000

J. D. FONTANA, CAPT. USN R.T. SHEARER
Commanding Officer Executive Director

ADMINISTRATIVE INFORMATION

The work described in this report was sponsored by the Office of Naval
Technology. The Navy Standard Matrix Processor Program under NAVSEA PMS 412
via the Naval Air Warfare Center supported preparation of this report. The parallel
programming cases examined form a basis for subsequent comparison to matrix
processor programming approaches.

Released by Under authority of
G. W. Byram J. R. Wangler
Technology Research and Space Systems and Technology
Development Branch Division

ACKNOWLEDGMENTS

The author would like to thank Dr. George Byram and Dr. Keith Bromley for
their suggestions and support on this work. Gratitude is also expressed to
Ms. Elizabeth Wald of the Office of Naval Technology (Code 227).

-Acoession For

STIS GRA&I G
DTIC TAB 0
Unannounced 01
Justif lcut.on

Dif steibut ion/

. Availability Codel

Avail and/or
Diat Speoie

LH

CONTENTS

1 INTRODUCTION ...

1.1 WHAT IS PARALLEL PROCESSING? 1
1.2 PARALLEL SIGNAL AND IMAGE PROCESSING MODELS 2

2 THE iWARP SYSTEM ... 4

2.1 iWARP SYSTEM CHARACTERISTICS 4
2.2 MESSAGE-PASSING ON THE iWARP SYSTEM 5
2.3 UNIX-C PROGRAMMING INTERFACE TO THE iWARP

SYSTEM .. 5

3 iWARP PROGRAMMING TOOL DEVELOPMENT 6

4 MAPPING APPLICATIONS TO THE iWARP SYSTEM 9

4.1 TWO-DIMENSIONAL FFT 9
4.2 TWO-DIMENSIONAL CONVOLUTION 16
4.3 NUMERICAL LINEAR ALGEBRA ALGORITHMS 18
4.4 THE IMPLEMENTATION OF AN IMAGE WEIGHTED

FRAME-DIFFERENCING SCHEME 27
4.5 ON PARATIPTIZATION OF A TWO-DIMENSIONAL

ADAPTIVE LMS ALGORITHM 28
4.6 ON A PARALLEL NEURAL NETWORK TRAJNING 30

5 CONCLUSIONS .. 32

6 REFERENCES ... 33

APPENDIX A: CODES .. A-1

FIGURES

1. Function partition and pipelined processing 3

2. Data partition and SIMD/MIMD processing 3

3. A ring network embedded in a two-dimensional network 7

4. Step 1: Data exchange between columns of processors 12

5. Step 2: Data exchange between rows of processors 12

6. Step 1: Data exchange between columns of processors 13

7. Step 2: Data exchange between rows of processors 13

8. Performance of two-dimensional FF1 (128 x 128) 15

9. Performance of two-dimensional FFT (256 x 256) 15

10. Performance of Cholesky factorization 20

11. Performance of solving a linear triangular system
(256 x 256) .. 21

12. Performance of solving a linear triangular system
(512 x 512) .. 21

13. Performance of QR matrix factorization (256 x 256) 24

14. Performance of QR matrix factorization (512 x 512) 24

15. Performance of a MVDR beamformer 25

16. Performance of the weighted differencing program 28

TABLES

1. Performance of matrix transpose (128 x 128) 14

2. Performance of matrix transpose (256 x 256) 14

3. Performance of matrix transpose (512 x 512) 14

4. Performance of two-dimensional FF1 (512 x 512) 16

ii

1 INTRODUCTION

1.1 WHAT IS PARALLEL PROCESSING?

The task of parallel processing is to develop a good strategy to partition a certain
computational task into a set of subtasks and to assign each subtask to a processor on a
parallel system. It seems to be difficult to design a single, high-level parallel processing
model and a set of tools that are efficient for all applications and/or for all parallel
systems. For a given (type of) application and a target parallel system, however, good
parallelism can be achieved by minimizing message-passing ov:rhead and maximizing
load balance. Accurate, theoretical performance evaluation of a nontrivial parallel algo-
rithm running on a message-passing system is generally not easy except for algorithms
that involve few interprocessor communications. An upper limit of the performance of a
parallel application can be found using the well-known Amdahl's law (reference 1): Sup-
pose a computational task needs a sequential execution time To and

To = T, + TWi,

where Tp is the execution time taken by the part of the computation that is fully paral-
lelizable, and Tnp is the part that is basically nonparallelizable. Now, if we perform the
computation on a parallel system with P processors, the execution time is (assuming a
perfect load balance)

T 1 = ++T
P np

The speed-up using P processors is

TO TO (1)

and the efficiency is defined as

S To
P TP+PTI&

Although this model is oversimplified for analyzing many practical parallel applica-
tions, it does indicate how efficiently one can use a multiprocessor system. Let us assume
there is an application for which To = 1 and Tp = 0.95. According to equation 1, using
10 processors would produce a speed-up of 7 and an efficiency of 70%. But using
100 processors would only produce a speed-up of 17 and an efficiency of 17%. This

example tells us that a massively parallel machine can be used efficiently only when the
nonparallelizable part of an application is very small compared with the parallelizable
part.

Programming a distributed memory, multiple-instruction, multiple-data (MIvMD) paral-
lel computer is indeed more difficult than programming a shared memory or single-
instruction, multiple-data (SIMD) parallel computer. This difficulty is related to the paral-

lel processing flexibility of such a system. This flexibility offers actual, efficient
implementations of various efficient parallel algorithms. Though it is possible to write
some basic, low-level parallel programming tools, it is generally not easy to design an
efficient high-level programming tool that fits all applications. For a parallel application
developer on such a system, a possible way to efficient implementation of a parallel
application algorithm is to use a conventional high-level programming language like C or
Fortran plus some low-level parallel system library function calls. One reason is that
programming at this level gives one the flexibility of reconfiguring in software the proces-

sor network so as to make it fit the best algorithm one can come up with. Another reason
is that at this level, the programmer has full control over actual message-passing opera-
tions. For fine-grain applications, one may need to be as 'greedy' as possible in terms of
data movement to minimize communication overhead, since otherwise the parallel per-
formance may be consumed by this overhead, as can be seen from Amdahl's law.

1.2 PARALLEL SIGNAL AND IMAGE PROCESSING MODELS

Many composite signal and image processing algorithms can be implemented on a
two-dimensional mesh of processors with different components of the algorithm proc-
essed in a pipelined fashion. In pipelined processing, for example, we could partition the
whole iWarp array into several connected subarrays, with each subarray performing a
different part of the algorithm. The throughput of pipelined processing is clearly deter-

mined by the slowest part in the chain. Pipelined processing falls into the category of
"parallel processing by function partitioning." Another popular model for parallel proc-
essing is "data partitioning," in which each processor deals with a subset of the data set
through the entire algorithm. Using this model, it is important to find a reasonable way to

partition and distribute the data so that the interprocessor communication overhead is
minimized for an application algorithm. The throughput of the data partition model is
limited by the processor(s) with the largest workload. Therefore, load balancing is one of

the crucial factors affecting the performance using this model. In mapping some complex
signal and image processing algorithms to a parallel system, it should be possible to
design an efficient approach using a combination of these two models. The two computa-
tional models are illustrated in figures 1 and 2, respectively.

2

Subarray Subarray
Input working on working on

- . first part second part
of the ofthe
algorithm algorithm

Subarray

Output working on
S* last part of

the algorithm

Figure 1. Function partition and pipelined processing.

Subarray

working on
1/4 part

of the data

Figure 2. Data partition and SIMD/MIM processing.

3

Load balancing seems to be a less challenging problem for many signal and image
processing applications since, in many cases, computational tasks can be evenly parti-
tioned (or nearly so) and assigned to processors before the computation starts and the

computational loads for different processors are static through the whole computation.

Minimizing communication cost is still an important issue to consider when mapping
signal and image processing algorithms to a message-passing parallel system. For many
pipelined types of processing, it is crucial to have a set of processors capable of perform-
ing external 1/0 to keep up with the processing rate within the parallel system.

Section 2 discusses iWarp architecture and programming on the iWarp system. Sec-
tion 3 discusses programming tools development on the iWarp system. Section 4 presents
mapping strategies for implementing signal and image processing applications onto the
iWarp system and their performance results. In appendix A, we include some codes that
illustrate how to write an application code on the iWarp system: a head file showing
necessary include files and global declarations; a processor-network set-up function illus-

trating setting up a logical network and performing message-passing; a main program
using our parallel programming tools to implement a weighted differencing of two
images.

2 THE iWARP SYSTEM

2.1 iWARP SYSTEM CHARACTERISTICS

The iWarp system is a distributed memory, MIMD multiprocessor system. Each iWarp
processor consists of three distinct components: a computation agent, a communication

agent, and a local memory unit. The computation agent performs the normal programmed
computation. The communication agent handles message-passing between different proc-

essors. The local memory unit provides access to local memory for both the computation
agent and communication agent. Each iWarp processor has a 0.5-megabyte (Mbyte) base

memory that can be upgraded in 0.5-Mbyte increments. Each iWarp processor has an
upper-limit speed (or "peak performance") of 20 MFLOPS on a C-Step chip for single
precision floating-point operations and 10 MFLOPS on double precision operations. The

peak performance for a B-step chip is half that of a C-step chip. The bandwidth of inter-
processor message-passing is 40 Mbytes/second in each of the four directions. So roughly

speaking, a minimum of four single precision operations are needed on each word

(4 bytes) of data being sent on to gain through parallelism. iWarp has a interprocessor
communication library called PathLib. The PathLib implementation offers a low-latency,
high-bandwidth interprocessor communication. The iWarp system was designed for fine-

grain types of applications, for example, signal and image processing.

4

2.2 MESSAGE-PASSING ON THE iWARP SYSTEM

The processor network on the iWarp system is a two-dimensional toroidal mesh, which
we call the iWarp array. One advantage of such a topology is that any processor on the
array is no different from any other processors on the array. This processor connection
structure makes it convenient to write scalarable parallel code and some important paral-
lel program development tools. For example, it is easy to write an application code that
runs on any rectangular iWarp array and performs 1/O at specified processors.

Message-passing protocols are included in the PathLib system. There are three types
of modes a programmer can use for performing message-passing. In iWarp terminology,
these modes are called streaming, express, and spooling (references 2 and 3). Streaming
provides the mechanism for fast, 'door-to-door' small message delivery, particularly use-
ful for pipeline or systolic processing. It was implemented using fast, special registers as
output and input 'gates' so that a message does not need to go through local memories of
sending and receiving processors during the message-passing process. Express is a facility
that allows each processor to connect a pair of message-passing 1/O gates so that mes-
sages can go through the processor's communication hardware from/to its neighboring
processors without affecting the activities taking place at this processor. I/O gates can be
connected or disconnected at runtime, which provides a means for flexible and efficient
interprocessor communication. Spooling allows transmitting a large message from a mes-
sage buffer at a sending processor to the message buffer at a receiving processor.
Message-passing in the spooling mode is asynchronous in the sense that the sending proc-
essor can start the next step of processing after telling the processor's communication
hardware to send a certain message buffer to a destination processor; and the receiving
processor's communication hardware will put the received messages in its local memory
without interfering with other activities going on at the processor. Hence, the proper use
of message spooling makes it possible to overlap communication and computation. On the
other hand, streaming mode message-passing is synchronous in the sense that sending
and receiving processors must coordinate properly during the message-passing. Inconsis-
tency in the pair of processors' actions may cause the program execution to stop there.

2.3 UNIX-C PROGRAMMING INTERFACE TO THE iWARP SYSTEM

If we use a parallel computer to perform a computationally intensive and well-
parallelized part of an application algorithm, other parts of the algorithm (e.g., visualiza-
tion and some sequential part of the algorithm) might better be executed on another (may
be sequential) machine. Indeed, there has been a growing interest in the supercomputing
world for a heterogeneous computing environment in which parallel systems can interface
with reasonable efficiency with various workstations and other systems. For example, it
would be nice to be able to perform message-passing between a program running on a
Sun workstation and a program running on any of the processors on a parallel system.

5

The Intel iWarp system provides a software mechanism called the imsg facility that

allows, at the application programming level, the message-passing between a C program
running on a host workstation and a C program running on the iWarp system. The way it
works can be briefly described as follows. We call the program running on the host work-
station the host program and call the program running on the iWarp array the cell pro-
gram. We first need to load the cell program to the iWarp array because the iWarp load
program will also start a controlling process, called the iWarp daemon process, which is
needed for the host program's initialization action (e.g., the host program needs to get the
memory address of the iWarp controlling process). Then we can load the host program.
The communication between the host program and cell program is realized by reading/
writing from/to a certain memory address of the iWarp controlling process. At the appli-

cation programming level, this facility makes one think it is possible to pass data from a
host machine to any iWarp cell directly. But the actual implementation of this mechanism
on the iWarp is a token-ring message-passing. Therefore, even assuming the imsg imple-
mentation itself is efficient, the imvg facility cannot do parallel message-passing on the
iWarp array, which would give a bad performance for some parallel applications. We
think the imsg facility is useful when we need to have the host program control the execu-
tions of cell programs or when we need to pass some data from the host program, which
may be the result from a computation performed on the host workstation, to the iWarp
array.

3 iWARP PROGRAMMING TOOL DEVELOPMENT

Although using a conventional programming language with some PathLib function
calls offers great flexibility and efficiency in mapping various application algorithms onto
the iWarp system, we do not want to rewrite much of the high-level communication and
simple global operation code in every application program development. To increase the
parallel code reuse, we have been writing some efficient parallel programming tools for
the iWarp system. These tools are in the form of C functions and can be called to facili-
tate parallel code development on the iWarp system.

The parallel programming tools we have developed include functions for setting up
processor networks of rings (unidirectional and bidirectional) and two-dimensional
toroidal meshes of various sizes; data movement functions for broadcasting, scattering,
and gathering a data array to or from an array of iWarp processors; a function for sum-
ming up a set of vectors or matrices distributed on an iWarp array and putting the result

at one of the processors in the iWarp array; and a function for transposing a two-
dimensional data array distributed on an iWarp array. We point out that with the code
that sets up a two-dimensional toroidal mesh, an embedded bidirectional ring can be
obtained by properly defining the message-passing I/O handles (for an explanation of

6

these handles, see references 2 and 4). Figure 3 shows a ring network embedded in a
4 x 4 toroidal mesh.

Figure 3. A ring network embedded in a
two-dimensional network.

For image processing applications, the typical data structure is two-dimensional. A
basic assumption we have made in terms of data partition is to have each processor hold
a few rows or columns of the whole data array. The scatter function can be called to read
from a disk file a two-dimensional data array and assign a submatrix (by rows or by
columns) to each processor of the iWarp array. The gather function can be called to
output submatrices distributed on an iWarp array to a disk file. The scatter and gather
functions never hold the whole data array since we also assume no processor would have
enough local memory to store the entire data array for an application. At this moment,
the performance of such 1/0 operations is restricted by the relatively low bandwidth be-
tween the ;Warp system and external I/O devices. For efficient, pipelined real-time com-
puting, e.g., for systolic processing, we may need at least one row or column of proces-
sors connected to external 1/0 devices to get enough I/O bandwidth. For some
applications, data overlapping at different processors is necessary (e.g., to form a window
of certain size). Therefore, we have genera!ized the scatter function so that an argument
to the function can be specified for the number of overlapping rows (columns) needed.

The global sum operation is often needed in computing on a distributed memory sys-
tem. An efficient implementation of such a function is important to the performance of

7

an application requiring many such operations. On a toroidal mesh, we implemented a
global sum function using the following algorithm, assuming the linear dimension of the
iWarp subarray used is a power of 2:

A Reduction Sum Algorithm Using Express (Split-Join)

Redefine row and column ID for this processor relative to the output processor ID;
/* right to left sum */
Bind output gate to left and input gate to right;
If column MD = 0

Receive and add width - 1 buffers to the local buffer;
Send out a software-mark
Goto label A;

flag 0- 1;
while(flag # 0)

if column ID is odd
Send out a buffer;
Join right-left gates;
if a software-mark comes

Receive and mend out a software-mark;
flag +- 0;

if column ID is even
Receive and add a buffer to the local buffer;
column ID - column ID / 2;

if column > 1, exit;
label A: ;
/* down to up sumr
Bind output gate to up and input gate to down;
if column Ml = 0

Receive and add height - 1 buffers to the local buffer;
Send out a software-mark
Goto label B;

flafg +- 1;

while(flag 6 0)
If column ID is odd

Send out a buffer;
Join down-up gates;
if a software-mark comes

Receive and send out a software-mark;
flag +- 0;

if columz ID is even
Receive and add a buffer to the local buffer;
column MD + column MD / 2;

label B: exit;

8

This function takes six parallel additions to get the sum of a linear array of data
distributed on an 8 x 8 iWarp array, with the result put at one of the processors specified
as an argument to the function. In general, the reduction sum algorithm needs lg2 N

parallel additions to get the sum of N numbers. It is often the case that the result of a
global operation is needed at all processors for subsequent computing. This can be done
by a broadcast (or replicate) function, which sends a copy of a buffer of data to each
processor on the iWarp arrmy. An efficient way to implement a broadcast function on

iWarp is to use the express facility.

Another global data movement operation is the transpose of a two-dimensional data
array distributed on the iWarp array. The reason that this operation is useful can be
explained as follows. Suppose we have distributed the data matrix by columns to the
iWarp array and we would like to do a left transform and then a right transform on the
data matrix. In matrix notation, we want to compute the product of three matrices:[left data 1[right]

transform matrix trans form
matrix matri J

Here we assume the first and the third transform matrix can be formed locally at each
processor. The left transformation (i.e., finding the product of first two matrices) can be
readily performed in parallel. To perform the second transformation (i.e., find the prod-
uct of the resulting matrix from the first transform and the third matrix) in parallel, we
need to transpose the data matrix since it is not partitioned correctly for that operation.
This example is applicable to the two-dimensional fast Fourier transform (FFT) algorithm
(see section 4.1) and to the singular value decomposition of a matrix. We will discuss
strategies for implementing a matrix transpose on the iWarp array in section 4.

4 MAPPING APPLICATIONS TO THE iWARP SYSTEM

In this section, we describe strategies for the mappings of two-dimensional FF17, two-
dimensional convolution, some image processing and neural network algorithms, and
some numerical linear algebra algorithms onto a message-passing parallel system. We
also present performance results obtained from the implementations of some of these
algorithms on the iWarp system. We basically used the data partition model in all our
discussions and implementations. However, the function partition model may be used as a
global strategy when we want to map a composite signal or image processing algorithm to
such a parallel system using some of the applications discussed here as components.

4.1 TWO-DIMENSIONAL FF1

Two-dimensional discrete Fourier transform is a tool frequently used in signal and
image processing algorithms. Its mathematical definition is

9

N2 -1 Ni-I

H(n,.n2) = • • ti(- 2 ,k)ti2 (n1 ,kl)h(ki,k 2), -1 = 0. .. N,1 - 1, n2 = 0..N2 -1;
2 2=0 h,--0

where 4-(n, k) = ezp(2wink/N,) . We can also write the above equations into a matrix equa-
tion that is more instructive for our purpose

H(1,1) ... SH(1,N2)

H(N1,1) ... H(N1 ,,N2)

M[(11) ...ti(1, NO) h(l, 1).. h(l, N2) t2 (1, 1) ... t2(1, N2)1

t: (Ni, 1) ... t1 (N, N1) h(N1, 1) ... h(NI, N2) t2(N2 , 1) .. i2(W 2 , N2)]

This matrix equation shows more clearly what needs to be done if we want to parallel-
ize the row-column transform algorithm for the two-dimensional Fourier transform. Sym-
bolically (see reference 5), the row-column transform algorithm, e.g., can be arranged as

H(ni, n-) = FT-on-indez-2(FT-on-index-1[h(k 1 , k2)]).

In matrix notation, this is equivalent to computing the product of the first two matrices
and then computing the product of the first product matrix with the last matrix. Suppose
we let each processor hold a few columns of the data matrix. The first matrix multiplica-
tion can then be readily parallelized. To do the second parallel matrix multiplication,
however, we first need to transpose the first product matrix. Thus, a simple parallel
two-dimensional FFT algorithm using row-column transform is

1. scatter the two-dimensional data array by columns to an iWarp array;

2. perform a parallel one-dimensional FFT on each processor in the iWarp ar-
ray;

3. transpose the data array distributed on the iWarp array;

4. perform another parallel one-dimensional FFT on each processor in the
iWarp array; and,

5. collect the transformed data array for the next processing step.

Now, if we have an efficient one-dimensional FFT code running on each processor of
a parallel system, the efficiency of the matrix transpose operation clearly has a great
influence on the performance of the two-dimensional FFT code. In matrix transpose
operation, each processor needs to send some data to each of the other processors in the

10

network. An efficient implementation of the matrix transpose operation should use as
many available communication paths as possible. Figures 4 and 5 show one way of per-
forming the matrix transpose on a mesh connection of processors.

This matrix transpose strategy basically consists of two steps. The first step performs
data transfer between columns of processors. In the first step, for example, proces-
sor(1,1) will send to processor(1,2) all the data needed by processors in the second col-
umn. Thus processor(1,2) needs a temporary buffer to store the received data for proces-
sors(i,2) for i = 2,..., height-of-network. In the case of each processor containing more
than one row of data, a local transpose is also performed at each processor in the first
step. The second step involves data transfer between rows of processors. In the second
step, for example, processor(l,1) will send data stored in its temporary buffer to proces-
sors(i,1) for i = 2,..., height-of-network. Using this matrix transpose strategy, the number
of pathways used simultaneously on a square iWarp array is vi/-, where M is the number
of processors in the iWarp array. A major drawback of this strategy is the need to store
temporary data on each processor, which is unfavorable if each processor has a limited
amount of local memory and the data size of the application is large.

Another way to implement a matrix transpose is illustrated in figures 6 and 7. This
matrix transpose strategy also consists of two steps. In the first step, each column of
processors sends data needed by processors on the same row but different columns. In the
second step, all processors but one on a certain row send data to a different row of
processors; the remaining processor does a local transpose; this pattern is repeated for all
processors on the row. This transpose strategy uses vrM"- 1 pathways simultaneously.
The strategy may be more efficient since all data transfer can be implemented from the
source to the final destination without using extra local memory.

We also point out that operation count for the row-column two-dimensional FFT is
O(2n2 log2 n). The row-column parallel algorithms discussed above have an operation
count O(2n2 log2 n/P), where P is the number of processors.

We measured performances of the matrix transpose operation and the first two-
dimensional FFT algorithm from our implementations. Performances on B-Step and
C-Step processors are compared. Tables 1 through 3 show the execution time for a com-
plex matrix transpose operation for three different sizes of matrices. The first perform-
ance data in table 3 are missing because the execution could not complete in that case.
We guess it may be that the data size required for each processor exceeds the memory
available for an application program on each processor. Figures 8 and 9 and table 4 give
the performance results for two-dimensional FFT computations.

11

This column of processors does a local transpose,f sends data needed by all rows of processors to
processors at the same row, different columns.

...0 0/:• U .. 0 [0..."
I a I

00 0
| ,a," - I

II1. I

nI0 0i 10
ta I

Figure 4. Step 1: Data exchange between
columns of processors.

~I ------------------

:n 0 0 1 Tr or

%_ . _ -- -- ----- -- - - - - send s d ata to p rocesso rs
------..----- at the same column, different

ros

Iu00 00

I .1-- - 2- D ata --a- a-- - a

a -- - - - - - - -- - -- a

a LJ00, 101

Figure 4. Step 1: Data exchange between rw

of processors.

12

This column of processors sends dataf-to processors at the same row, different
columns.

I I
II II

I I, I ;
I ilt I li lI

1•..j, •...j, Ii I ~ i 0
:0: J0: :0 :

I ~ I If ' I I I I

I I l I , i I
I I I III I j I

=, .I i .=.., i j
I II I I

€-- ', ; -%-,- -

Figure 6. Step 1: Data exchange between
columns of processors.

This processor does a local t17eposs

Figure 7. Step 2: Data exchange between rows

of processors.

13

Table 1. Performance of matrix transpose (128 x 128).

COMPLEX MATRIX TRANSPOSE OF 128 x 128

PROCESSORS 4 16 32 64

TIME (ms) (B-STEP) 30 13 9 7

TIM (ms) (C-STEP) 15 6 4 3

Table 2. Performance of matrix transpose (256 x 256).

COMPLEX MATRIX TRANSPOSE OF 256 x 256

PROCESSORS 4 16 32 64

TIE (ms) (B-STEP) 125 52 40 29

TIME (ms) (C-STEP) 63 25 18 14

Table 3. Performance of matrix transpose (512 x 512).

COMIPLEX MATRIX TRANSPOSE OF 512 x 512

PROCESSORS 4 16 32 64

TIME (ms) (B-STEP) 232 162 121

TIME (ms) (C-STEP) "_" 167 79 55

14

0.9 I

0 0.8 ***.2f ti.. b. t' - .

o 'fftlM2B.c.datl ~
0 0.7

0.6 a.... 12 8x 12 -8-*...........
UpperiCurver: B-step Chip

0)0 5 0.5.........r...............

Lower! Curve:: C-step Chip

0
4J0.

......

W 6.0 -

.'f256.b.dat'
0
o 5.0- '

4.0 .- ta. S ize......... .. 8

Upper: Curve:: B-step Chip
E3.0 -e C urve:r- C-step C.hip.-

0
4J-

1.0-.-. .-....-.. I.--....

K - -- -I --. -- - --- - - ----- --

0.0 I

10 20 30 40 50 60 70
Number of Processors

Figure 9. Performance of two-dimensional FF17 (256 x 256).

15

Table 4. Performance of two-dimensional FFT
(512 x 512).

TWO-DIMENSIONAL FFT
512 x 512

PROCESSORS 16 64

TIME (sec) (B-STEP) 4.814 0.923

TIME (sec) (C-STEP) 2.322 0.403

It is interesting to see from these two-dimensional FFT performances that the execu-
tion time is more than doubled when the number of processors used is just halved. This is
because the transpose time increases as the number of processors used decreases. It can
be seen from tables 2 and 3 that on an 8 x 8 iWarp array, the communication time (i.e.,
the matrix transpose) takes about 13% of the total execution time for the two-dimensional
FFT of data size 512 x 512, but the communication takes about 20% of total execution
time for a data size of 256 x 256. The ratio of communication to computation increases
as the the data size decreases. We also note that the actual performances on C-step
processors, using the compiler designed for the B-step processor, for both matrix trans-
pose and two-dimensional FFT, are twice as fast as on B-step processors. The actual
performance on a C-step processor is expected to improve significantly when the new
compiler for that chip (not available to us now) is used. Using an 8 x 8 array of C-step
processors, the achieved performances of two-dimensional FFT is about 57 MFLOPS for
a 128 x 128 complex data array, 45 MFLOPS for a 256 x 256 complex data array and
43 MFLOPS for a 512 x 512 complex data array.

4.2 TWO-DIMENSIONAL CONVOLUTION

Convolution is a fundamental operation in signal and image processing since it is a
filtering operation. Hence, a fast two-dimensional convolution operation is important to
speed up many image processing applications. The mathematical definition of the discrete
two-dimensional convolution is

V(.1,,,)= x¢)h21, (2)

16

where we assume h(,) is the convolution kernel. In typical cases, we can also assume

z(ni,n 2) 0 only for 0 < ni,n2 <n N - 1,
h(ni,n3) # 0 only for 0 _< ni, n3 _ M - 1,

and N > > M. With the above given supports for input and kernel functions, it is seen that

I(ni,n2) 0 only for 0 <_ n2, n25 N + M - 1

It can be shown that (see reference 6) the two-dimensional convolution using equa-
tion 2 has an operation count 0 ((N + M - 2)2 M'). If we assume the convolution opera-
tion is an intermediate step of a larger (parallel) processing algorithm and that the data
are partitioned by rows consecutively (here we assume the first variable of x(n1, n2) is row
index), then an obvious way to do a parallel two-dimensional convolution is the following:

1. Broadcast or compute locally the kernel function h(ni,na2);

2. Each processor computes 1(ni,n2) for ni that falls in the range of the input
data z((n1, n2) and all n2.

Since there are N + M - 2 nonzero output rows, the processor that holds the last few
rows of input data will have M - 1 more output rows to compute. Since M << N and
there should be fewer computations for the last few output rows due to the fact that
x(nj, n2) = 0 for ni ?! N, workload is largely balanced in this case. Since computing out-

put data points at the input data partition boundary will need input data rows outside the
boundary, proper input data overlapping is necessary, which means the data transfer
operation between neighboring processors (in terms of data partition, not physical loca-
tion of processors) must be performed before the parallel convolution starts. The opera-
tion count for the parallel convolution is approximately 0 ((N + M - 2) I M2) /P, where P
is the number of processors.

If the kernel function h(ni,n 2) is separable, we can write

C
Go o

v(n2,n2)= 2., hi(ni-ki) F,. z(kj,k2)),(n2-k2).
k1 =-@ o=-

Now if we first compute

f(ki,,2) = u(ki(,k2)h(n2 - k2)

for all ki, and n2 for which f(k1 ,%2) is nonzero, then compute

vFaa2)= E j17

17

for all nonzero output data points; the total operation count from these two steps
is approximately (see reference 6) NM(N + M - 1) + M(N + M - 1)2 , which is about a
factor of M/2 less than that for a nonseparable kernel. It is not difficult to see
that the reduction in operation count for a separable kernel can be achieved in the parallel
implementation discussed above in essentially the same way as in the sequential
implementation. The operation count for the parallel implementation is
0 (NM(N + M - 1)/P + M(N + M - 1)2/P), where P is the number of processors.

4.3 NUMERICAL LINEAR ALGEBRA ALGORITHMS

In this section, we present several basic, parallel numerical linear algebra algorithms
and their implementations on a message-passing parallel system. These linear algebra
tools are frequently used in many signal and image processing algorithms. Most linear
algebra algorithms belong to the category of fine-grain applications, which means the
ratio of computations and communications is not very high. For such applications, mini-
mizing communication overhead is crucial to get a good parallel performance.

Broadly speaking, linear algebra algorithms can be classified into two types, one for
solving a linear system of equations, the other for finding eigenvalues of a matrix under
various assumptions. The computation could become very expensive when the problem
size (or the matrix) is large or when it is necessary to solve a certain problem many times.
For real-time applications, the problem size may not be very large, but the solution to a
problem must be obtained as quickly as possible. All these situations require us to have
an efficient way of problem solving. Parallel processing is a popular choice in that regard.

Before constructing a parallel algorithm for mapping to a parallel system, we may
want to think about possible ways of data distribution on a network of processors. Under
the assumption that we want to distribute a two-dimensional data array by rows or by
columns, there are two common data distribution strategies. The first strategy is to have
each processor hold a few consecutive rows/columns of data. The second strategy is to
distribute rows/columns of data in a round-robin way. Here is an example of the second
data distribution strategy. Suppose we want to partition a matrix with eight columns
among four processors. The round-robin way of data distribution will put first and fifth
columns in the first processor, the second and sixth columns in the second processor, the
third and seventh columns in the third processor, and the fourth and eighth columns in
the fourth processor.

We now present these parallel algorithms in a pseudo-code form. We also discuss
implementation issues and give performance results on the iWarp system. More detailed
explanations of some of these algorithms can be found in references 7, 8, 9, and 10.

18

Performance results for these linear algebra algorithms were obtained from B-Step proc-
essors. We expect the performance on C-step processors would be doubled using the
current compiler, as has been verified on the two-dimensional FiF code.

Suppose we need to solve a symmetric linear system and the coefficient matrix is
positive definite; Cholesky algorithm can then be used. Here is a parallel Cholesky algo-
rithm that can be implemented on a ring network of processors (reference 7). We imple-
mented this algorithm using express communication with a ring connection of processors
on the iWarp system. The performance on a 512 x 512 data matrix was measured and is
shown in figure 10.

A Ring Parallel Cholesky Algorithm

0.-O, j-O, j2 -- ;

last 4- i + (k - l)p;
while j 9l6out

lfs + 1 E {i,i+p,..-.,last)

Generate G(j : n,j) in gia(j n) and copy it into R14.(j n, jj);
If a <k

s end(gj.(j : n), right);
updae A.(:,ji + 1 : k);
a *-a+;

end
hi =ji+1;

else

receive(gj..(j + 1 : k, left);
ifa + 1 E {rightright + p,...,right + (k - 1)p}

send(gu,(a + 1 : n). right);
end

a 4- +1;
update RI.(:,j, : k);

end
end

After matrix factorization (an LU algorithm can be used for nonsymmetric systems),
we need to solve some triangular linear systems to get the solution to the linear system.
Here is a parallel program for implementing a triangular system solver. This algorithm is
called a scalar-sum, fan-in algorithm in reference 10. The result of the
fan - in(buffer,pid) operation is that all processors send out a number stored in buffer,
and the processor with ID equal to pid gets the sum of those numbers, including its own
part. Map(i) is the processor ID that contains the i th column of the matrix. How the
fan-in operation (which is a global sum operation) is carried out depends on the processor
network.

19

0 14.0
Ocho512.dat'ý

o 1 2 .
a

10.0 Matrixo Size : 512x512

8 .0-

S6.0
8 .0

4-I

S4 0~.. -.. '.... '

0 4 . 0 ! '-

o2 .0..................... .

x
W 0.0

0 10 20 30 40 50 60 70
Number of processors

Figure 10. Performance of Cholesky factorization.

A "Fan-In" Parallel Triangular System Algorithm

for = 1:
&=0
for j =1 :i - 1

if E {rid,id+ p,..,rid+ (k - 1)p}
a =a+ zj

end
a = fa,,-i.(,, ,a(i))
fj E {(rid,.id+ p,. .- Id+ (k - 1)p}

xi = (bi - 4)I
smd

The above triangular system solver algorithm can be implemented on various types of
processor networks. We tried ring and two-dimensional mesh implementations. In the ring
implementation, we just accumulate the sum one processor at a time along the ring. In the
mesh implementation, we use the reduction sum tool to do the fan-in operation. We found
that the mesh implementation is 30% faster. Figures 11 and 12 show the performance
results for the mesh implementation.

20

c I00.0 X0 ' ' :U"I • ' i25!6 • i -+---
Si t r dat '
m 9 0 0 -.. i.......+ 4

"•X 80.0 • .- !--- ! Mat rix Siz e; 2-56x• 56

"• 70.0

• ++ ++
• • 5 0 • 0 •. ;+ •. A.• !: --.-- i---'°):

O + +

40.0 ' ' , , , , i • ,
X 0 i0 20 30 40 50 60 70
SNumber of processors

Figure 11. Performance of solving a linear triangular system (256 x 256).

S340 0 , , , , ,
o • : : : : :
S32 O, 0 ! • ":. •.-t.riS.l•--•;-da-•.'-;
o'J + • • i ;

• • 300.0 •""

"• 2 8 0 . 0 • ": •" ÷ ++ ++4 ! + Matrix Size: 512x512
•- 260.0
C 2 4 0 • 0 •

S2 2 0 . 0 i ... +. + +
tin_-,• 200.0
=:: 180.0

S.. i I ,i.I. • ;
o i+0.0 ii!il \ • i
S1 4 0 . 0 " -"- " '0

tO 120.0 ' ' ' ' ' '
•< 0 I0 20 30 40 50 60 70"I Number of processors

Figure 12. Performance of solving a linear triangular system (512 x 512).

21

It can be seen that the performance does not improve much as the number of proces-

sors used exceeds 16. This is somehow expected since the algorithm we used still contains

a substantial sequential part. Another parallel algorithm for solving a triangular linear

system, called the wave-front algorithm in reference 10, is also discussed in reference 10.

Assuming a column-oriented data partition, here is the pseudo-code for an upper-
triangular system:

A Wavefront Parallel Triangular System Algorithm

for j E mycols
for k = 1 to #segments
if j! 1 receive segment
if k = 1 then

S= (b -

segment = segment - {Zj}
for zi E segment zi = zi + xjLij
if Isegmentl > 0 then

send segment to processor map(j + 1).

In the above wavefront algorithm, each column of the upper triangular matrix is

divided into a number of segments. Each segment has a length a of components. Profes-

sor map(l) first computes ri, then proceeds to compute the components z = wi-i of the

first segment vector z for the first column. Once computing z is done, processor map(l)

sends z to processor map(2) so that the latter can compute X2 and then begin further

updates of z. Meanwhile, processor map(l) has resumed work on the next segment of the

first column. A more detailed explanation of this algorithm can be found in reference 10.

Intuitively, it may perform better than the fan-in algorithm, since by controlling the
parameter a, it is possible to make all processors busy most of the time. We think a good

choice of the parameter a is to jct it equal the number of processors. We have not

implemented the wavefront algorithm at this moment. But the idea of this algorithm is

very interesting, and it could be useful in parallelizing other applications.

Orthogonal factorization of a matrix is a useful tool. For example, a regular QR fac-

torization on a matrix with full column rank is a numerically stable and computationally

efficient approach to computing a solution to least square problems. QR factorization can

also be used to find eigenvalues of a matrix. We now list a parallel QR algorithm using
Householder transformations on a ring network of processors.

22

A Ring Parallel QR Algorithm

64-1,41
last-- i + (k - 1)P;
next_,d ,- (i + 1) inod(p);
nextJaat -- next.rid + (k - 1)p;
while < n

if a E {i,i+p,..,last}
w(j: ,.) -- house(Al..(j: ,j));
Store v(ji: M) into Q(j: Mj);
jend(v(j : m), right);
Am(j :m,j : k))
4- row.houue(Al&,(j :m,j : k)),w(j :n));

else
receive(v(j : ,), left);
if a 0 {next-rid, nezt-rid +.. . , nextJlat}

en,,ad(,(j : m), right);
end
Store ,(j: m) into Q(j: rj);
if a _ lastAlc(i : , : k=)

4- row.home(A.(j : m,j k)),v(j: vn));
end

S4-- a+1;

end
end

The performance results for QR factorization are given in figures 13 and 14. We can
see that the parallel performance for this matrix factorization is much better than that of
solving a triangular system. This is unfortunate for applications where one needs to solve
a linear system with one coefficient matrix and many right-hand-side vectors.

These linear algebra algorithm tools have been used to implement an acoustic signal
processing algorithm. Specifically, we picked the Minimum Variance Distortionless
Response (MVDR) beamformer computation as a test case. In MVDR beamnforming (ref-
erence 11), one needs to compute the following quantity (called beam power)

PMgVDB = 1_)

where Rc = XX', X is a sensor output data matrix here, and we assume X has fall
column rank. One way to compute PmvDx is to perform a QR factorization on X first,
then we can write PmvDa as

PMVDI =

23

S11.0 ,
S1 0 0 r 5 6 , a
10.00o 9 0"\ "i "............ "

8.0 s. .• -.........-.
7.0 .a ri 256~

6.0
E- i ii!•ilI" •

5.0

0 10 0 4,r0 5. 60 70

Figure 13. Performance of QR matrix factorization (256 x 256).

4 J' q S 2 . d t '

o80.0 r5.2......... . - -...

3 .0•
5 •

Ui

0 7.0

-ri

d 50.0

* 40 .0 ..-....-. 4

30.0

0 .0 20 30 40 50 60 70

Number of processors

Figure 14. Performance of QR matrix factorization (512 x 512).

24

where Q and R are the matrix factors from QR factorization of X. Thus, the MVDR
computation using OR consists of a QR factorization, a matrix-vector multiplication, and
a solution of a linear upper triangular system. We do not give further details about the
MVDR implementation in this report (these can be found in reference 7), but give the
performance results for a 512 x 512 data matrix using different numbers of processors in
figure 15.

a) 140.0 , ,

120.0 - 'rvdr5l.2.dat'I
o2 o o • i • r.-

S i 0 0a) 100.0

80 .0 a.t..i.----Si-ze- 5- . . .12x .6 1 2

- 60.0o 4.00 iiiiiiiiii !
46-)

u 0 0
o20.0

S0.0 p i
0 10 20 30 40 50 60 70

Number of processors

Figure 15. Performance of a MVDR beamformer.

For a rank-deficient matrix, singular value decomposition (SVD) of the matrix is a
better approach for finding the minimum norm solution to the least square problem, (see
reference 8). SVD also provides the option of a reduced rank approximation in the case
of an ill-conditioned matrix, which is accomplished by zeroing the singular values that are
smaller than a prescribed threshold. Again the programming tools we have developed,
including the matrix transpose function, can be used to implement a parallel SVD algo-
rithm on a distributed memory, message-passing system. The SVD theorem states: if A is
a real, m x n matrix, then there exist orthogonal matrices

U = [U1 ,.. .,uJ E , rx"', and V = [v,,...,w] E R'.x

such that

UT AV = diag(a1 , ... , o,) E R'x"

25

where 17 2! 02'" _> 0. There are several ways to find the SVD factorization of a matrix;
some of them need to form the matrix ATA, which could give rise to an ill-conditioned
matrix to work on. We now describe a parallelization strategy for a SVD algorithm pro-
posed in reference 8. This SVD algorithm first transforms the matrix into a bidiagonal
form

a, b, ... 0

0 a2

0 ... 0 0"

Then some techniques similar to the symmetric QR algorithm also discussed in refer-
ence 8 are used to diagonalize the matrix B. This sequential SVD algorithm is listed
below.

A Singular Value Decomposition Algorithm

Use Householder matrices to bidiagonalize the input m x n (m _. n) matrix A:
B +- (U • ... U.)A(V 1.
where Ui is. x m, V, is n x nand B is. x n;

untilq = n
For any i = 1 : n - 1

Set a, 1+l to zero if Ja,•+j < e(jaiji + Iai+,,+l 1);
Find the largest q and the smallest p such that if

B11 0 0
B = 0 B22 0

0 0 B33

(where B11 is p x p, B:2 is (n - p - q) x (n - p - q) and B33 is q x q)
then B3 is diagonal and B22 has no nonzero superdiagonal;

ifq < n
if any diagonal entry in B22 is zero,

Zero the superdiagonal entry in the same row,
else

Apply a symmetric QR step to B22 ,
B = liag(I,,U, ,l,+M_)n)TBdia9(I,, V, Iq);

end
end

end

The bidiagonalization step of this algorithm basically has an operational count of twice
that of OR factorization when m m n and is therefore 0(n-). The second step of this

26

algorithm works on a bidiagonal matrix to annihilate superdiagonal elements through an
iteration process. If we need to do a SVD on a matrix in a signal or image processing
algorithm, under the assumption that the data matrix is distributed in, say, columns, the
first step can be parallelized by multiplying a transformation matrix to A from left, trans-
posing the resulting matrix, multiplying a transformation matrix to A from right, trans-
posing the resulting matrix again, and so on. Since at each step we are working on a
matrix of smaller size, the size of the submatrix to be transposed may also decrease. This
will require some additional decision code in a matrix transpose program. The second
step of the algorithm is perhaps even more communication intensive and it is probably
efficient to do it in a single processor. In summary, SVD is a fine-grain computation and
it contains some sequential parts that seem to make it harder to get a good parallel
performance.

4.4 THE IMPLEMENTATION OF AN IMAGE WEIGHTED FRAME-
DIFFERENCING SCHEME

Using our parallel programming tools described in section 3, we implemented a multi-
spectral, weighted frame-differencing scheme on the iWarp array. Given a set of images
A(i), i = 1,..., n, we would like to compute cross-covariances of pairs of images and out-
put images of the form

Ad(i, j) = A(i) - p(i,j)A(j)

where p(i,j) is the cross-covariance between A(i) and AU). This operation is often used
as one of the steps of a detection algorithm for identifying small targets embedded in
background clutter, under the assumption that background clutter is statistically correlated
between different image frames and targets are not. A pseudo-program for performing
this is as follows:

A Parallel Weighted Differencing Program

Input and scatter a set of images by rows to the iWarp array;
Normalize each image by rows at each processor;
Compute local sum of pixel values of images;
Compute global sum of pixel values of images;
Compute means of pixel values of images at one processor;
Broadcast the means to all processors;
Compute partial crous-covariances of each pair of images at each processor;
Using the global sum to get complete cross-covariances;
Broadcast the cross-covariances to all processors;
Compute weighted frame-differences at each processor;
Gather and output differenced images from the iWarp array.

27

Except for distributing and gathering the data array, the weighted frame-differencing
operation is highly parallelizable, an example of a coarse-grain application. In figure 16,
we display a performance curve of execution time versus the number of processors used,
where the execution time is measured after data scattering and the weighted difference is
performed on two images of size 128 x 128. The performance was measured on the
C-step array. Almost linear speed-up is achieved, as it should be expected for a typical
coarse-grain application.

120.00
O -- 'wd.dat';

S100.0

S 'Image Size:'128x128
80.00 ..

60.0 - --

Numb20.0 -r o p

0 ~0.0 -
X 10 20 30 40 50 60 70

Number of processors

Figure 16. Performance of the weighted differencing program.

4.5 ON PARALLELIZATION OF A TWO-DIMENSIONAL ADAPTIVE LMS
ALGOrITHM

The two-dimensional adaptive LMS algorithm (TDILMS), as described in reference 12,
is an optimal filtering algorithm with respect to the mean squared error measure. The
algorithm can be used for image enhancement and is said to to be an improvement to
Wiener filtering when applied to nonstationary image signals. The TDLMS algorithm as
described in reference 12 is inherently sequential. We now propose a modification to that
algorithm to make it possible for an efficient parallel implementation. We now give a
brief description of the TDLMS algorithm and show how it may be modified for a possi-
ble parallel implementation on the iWarp system.

28

Suppose we have two input images, each of dimension M by M. We call the first image
the desired image, D, and the second image the reference image, X. We want to filter the
reference image by the operation

N-I N-Iy(m,.n) E E• Wi w(i,j)X (m - 1,.n- k),
s--O 1--0

where i is a pixel index with m = mM + n. The error signal ej is defined as

N-IN-2 (3)
ej = D(n,-n) - VCmn) = D(r,n) - , W 3 (i, j)X(m - 1,n - ().

i=0 j=0

for the i th iteration. The aim is to obtain a set of weights W(i, j) (which can be seen as a
N by N matrix) so that the quantity

Mean-Squared-Error = E(el)

is minimized for all j. Wiener filtering does. this optimization by evaluating the mean-
squared-error E(ei) and finding the optimal weight matrix through solving a linear sys-
tem of equations with an autocorrelation matrix as the coefficient matrix, under the as-
sumption of wide-sense stationarity. The adaptive LMS algorithm described in refer-
ence 12 proceeds as follows. Using the steepest decent idea, one can modify the weight
matrix recursively:

Wj+i = Wj- vG1 ,

where v is an adjustable parameter used to control the convergence speed and Gj is the
gradient matrix of E(e') with respect to W1 :

G,(m, n) = OW(m, n)'

For practical application, one may use ej in place of its statistical average. Therefore,
the derivatives G,(m, n) can be computed using equation 3 and we can get an explicit
equation for updating the weight matrix:

W,+l((, k) = W, + 2ve3X(m - 1, n - k).

It is hoped that this iterative algorithm will converge to a weight matrix that minimizes the
error ej for all i.

Since the above adaptive algorithm iterates on the pixel index j, it is difficult to
parallelize its computation. However, since the goal is to minimize ej for all I, we argue

29

that the sequential updating order for the weight matrix is not necessarily the best one.
There are other ways to update the weight matrix that may be more efficient. For exam-
ple, we can first compute the errors ej for all j and then average them. The updating
equation for the weight matrix thus becomes

N 2 -1We-" = W0d'V_ - ,• (eix(m- z,,'-k,)). (4)
N2

Using the updating equation 4, we actually replace the ensemble average defined by
E(eJ) with the spatial average. In addition, this updating operation can be parallelized
easily. Here is a pseudo-program for a parallel implementation of the adaptive LMS algo-
rithm:

Distribute input images by rows (or by columns) to all processors;
/* some overlapping of rows of data is needed */
Compute and broadcast the initial weight matrix;
Each processor computes error ej for indices j belonging to this processor;
Each processor computes a local sum of ej;
Do a global sum of ej and put the result in, say, processor 0;
Processor 0 computes the average of ej and updates the weight matrix W;
If the avr•,ge error is less than a threshold;

processor 0 output weight matrix, all processors stop execution;
BlSe

Processor 0 broadcast weight matrix to all processors,
all processors repeat from step 3.

4.6 ON A PARALLEL NEURAL NEIWORK TRAINING

The neural net has become a useful tool in many signal processing and pattern recog-
nition applications. We now describe the use of our programming tools to implement a
backpropagation (BP) neural network training. A BP neural net is a mapping network that
can approximate a multidimensional function. A detailed discussion on this network can
be found in many books about neural networks, e.g., reference 13. Given a set of training
data consisting of pairs of desired inputs and outputs, the task of training the BP neural
net is to adjust the parameters of the network (called weights) so that the difference
(error) between the output of the neural net and the desired output is minimized. The
error function of a BP neural net can be written as

ER(w) = >• If(,) - B(z,,, w)12,
3=2

30

where 1(3k) is the correct value of the function f(z) at ah, which is to be approximated
by the neural net. B(zk, w) is the output of the BP neural net at Ch . N is the total number
of training inputs z*. The adjustment of the network parameter vector w, called the
training of the network, is carried out according to the following rule based on the deepest
decent principle:

S=w'- l 0_k ,(5)

where I is the layer level index, i and j are node indices on level I or I - 1. The second
term on the right-hand side of the above updating rule is the partial derivative of the error
function ER(w) with respect to the weight vector component wuij. The parameter a in the
updating rule is called the learning rate, which can be adjusted to improve the conver-
gence speed. The training stops when the difference norm of the weight vector is below
some threshold. It is often that the training process is very time-consuming and, therefore,
parallel processing can be applied to speed up the training process.

It is fortunate that the training rule (equation 5) can be easily parallelized using the
data partition model. In particular, we can let each processor work on a subset of the
training inputs to get a partial sum in the sum for the partial derivative of the error
function with respect to a weight component. Then a global sum operation is performed to
compute the partial derivative and the sum is put in one of the processors. A broadcast
operation can then be performed to replicate the partial derivative to all processors. Each
processor can then use the partial derivative to update the weight component. The advan-
tage of this parallel implementation of a BP neural net training is its simplicity. The code
executed on each processor is just a sequential BP net training code plus some simple
global operations that can be implemented very efficiently. Therefore, a good perform-
ance speed-up should be achieved on this application.

A limitation of the above implementation is that it only applies to the training rule
(equation 5), called the batch mode training. For some applications, it has been found
that a nonbatch mode training rule gives a much faster convergence rate. In the nonbatch
mode training, the weight vector w updating is performed for each input rather than
waiting until the contributions from all inputs are accumulated. To parallelize such a
training process, we need to decompose the neural net structure itself and let each proces-
sor contain a part of the neural net. This is a combination of data and function partition
since each input data vector also needs to be distributed among processors. Since the
processing is pipelined (from input layer to output layer), it is crucial to have a high

bandwidth of data input rate to the parallel system so that the input operation would not
become a bottleneck of the whole processing. It seems inadequate to have only one

31

channel for external I/O, as does the iWarp system, for a parallel system to perform this

kind of processing.

5 CONCLUSIONS

We have discussed in this report several mapping strategies for the implementations of
a few programming tools, mathematical tools, and signal and image processing algo-
rithms on the iWarp system. Our parallel applications development is based on the data
partition MIMD model, which we think is a natural choice for these applications and for
the iWarp system. These mapping strategies should apply to other message-passing MIMD
systems as well. For example, to make the codes we developed for running on the iWarp
system run on Intel's Touchstone system, one only needs to change the network configura-
tion code and the names of message-passing functions.

Good performance speed-ups have been obtained from implementations of two-
dimensional FFT, a weighted differencing algorithm for multispectral image processing,
and some matrix factorization algorithms. It was also shown, from algorithm analysis
and/or from actual performance data, that some applications like solving a triangular
linear system and performing a singular value decomposition of a matrix is more difficult
to parallelize. If we define the efficiency of a parallel application as the ratio of speed-up
over the ratio of numbers of processors used, the efficiency usually improves as the data
size of the application increases. For example, as can be computed from figures 11
and 12 for using 16 processors to solve a triangular linear system, the efficiencies are
about 51% and 62% for data sizes of 256 and 512, respectively.

When mapping a composite application algorithm to a parallel system, one needs to
parallelize different parts of the algorithm. For example, a moving target detection algo-
rithm called the InfraRed-Search-and-Tracking (IRST) algorithm may consist of an image
registration component, a weighted differencing component and a three-dimensional
matched filtering component. Clearly, the parallel application developer should take the
mapping of the whole IRST algorithm as an integral task when devising a mapping strat-
egy. It is possible that a mapping strategy is efficient for one component but is not effi-
cient for another. Thus a balance of efficiency between different components is needed to
get good performance of the whole algorithm. For applications discussed in this report,
we assume a two-dimensional data array is partitioned by rows or columns, and a matrix
transpose is performed when the data distribution is not suitable for a parallel operation
on the data.

Finally, we think for the function partition model like pipelined processing, which is
popular in many real-time applications, there should be a balance between the external
I/O bandwidth to the parallel system and the processing speed within the parallel system.
The iWarp system has only one 1/O channel connected to the host machine. This will
become a performance bottleneck for real-time, pipelined processing.

32

6 REFERENCES

1. Z. Hussain. 1991. "Digital Image Processing - Practical Applications of Parallel Process-
ing Techniques," Ellis Horwood.

2. "iWarp Programmer's Guide," Intel Corporation, September 1991.

3. "iWarp C User's Guide," Intel Corporation, September 1991.

4. B. Greer. 1991. "A Tutorial on Using iWarp PathLib," Intel Corporation.

5. W. H. Press et. al. 1988. "Numerical Recipes In C," Cambridge University Press.

6. J. S. Lim. 1990. "Two-Dimensional Signal and Image Processing," Prentice Hall.

7. J. Z. Lou. 1992. "An Implementation of the MVDR Beamformer on the Intel iWarp
System," NCCOSC/NRaD Technical Document 2282.

8. G. Golub and C. Van Loan. 1989. "Matrix Computations," The John Hopkins Univer-
sity Press.

9. C. Van Loan. "A Survey of Matrix Computations," Theory Center Technical Report,
Advanced Computing Research Institute, Cornell University, Ithaca, NY,
pp. 14853-5201.

10. M. Heath and C. Romine. 1988. "Parallel Solution of Triangular Systems on Distrib-
uted-Memory Multiprocessors," SIAM J. Scientific and Statistical Computing, vol. 9,
no. 3.

11. D. Johnson. 1982. "The Application of Spectral Estimation Methods to Bearing
Estimation Problems," Proceedings of the IEEE, vol. 70, no. 9.

12. M. M. Hadhoud and D. W. Thomas. 1988. "The Two-Dimensional Adaptive LMS
(TDLMS) Algorithm," IEEE Transactions On Circuits and Systems, vol. 35, no. 5.

13. Y-H Pao. 1989. "Adaptive Pattern Recognition and Neural Networks," Addison-
Wesley.

33

APPENDIX A

CODES

A-1

Appendix A: main.h

*A head file for global declarations.

Au~thor: John Lou, Code 761
*Last modified: July 21, 1992

#Include <sye/time.h
#include <stdio~h
#include '<math~h
#include <ivarp__cc.h
#include <gates .h
#include <regnums~h
#include <asm/gen_jasm.h>
#include <asm/pwasm. h
#include <pathlib/pl~h
#include <iwsys/getcfg.h

typedef int *ivector;
typedef float *fvector;
typedef fvector *fmatrix;

/* Define communicat ion constants ~
#define left 0
#define right 1
#define up 2
#define down 3
#de fine max out 4
#define ma3C-out -6ring 2
#define clk 0
#define cclk 1

/* Function delarations *
extern nt, getcfg 0;
char *malloc o;
void main o;
void my-ids ();
Void nest-connect 0;
void ring mesh 0;
void assign chan 0;

/* Other global definitions*/
izt _cellid, sys height, ayeýýwidth;
int height, width, ncells;
int rowid, colid, linid, ringid;
int o chan (maxoýuti, i,_chan (max _out];
int o chan ring [max-out-rinq], iýchaný_ring [max-out ring];
int nrows, cos

A-3

Appendix A: mesh-ring.c

"* Set up a 2-D toroidal mesh network with width*height
"* iWarp cells. Call a ring setup function to enbed a
"* bidirectional ring in the 2-D mesh. Assume the number
"* of columns of iWarp cells in even. The upper-left
"* subarray is used.

"* 4Author: John Lou, Code 761
"* Last modified: July 31, 1992

#include "main. h" /* head file contains global decads

#define XR PLDIRXR
#define XL PL_-DIXL
#define YU PLC_DIRYU
#define YD PLDIR_-YD

/* Assign 2-D mesh ID to each cell *
void
mmyids (

rowid - _ cellid/sys width;
colid - _cellid - rowid*sys width;

'ai rowd*width + colid;

1* my~ids *

void
mesh -ring ()

net connect 0;
/* Set up a clockwise ring *
if(Urowid%2))

/*even rows *
if(colid > 0 66colid < width - 1)

o~chan ring~clk] - aý_chan~right];
i~chaný_ring Cclk] - i chan Cleft];

if(colid aft 0 66 width > 1){
ochan._ring[elk] - o0 chan Cright];
ichan _ring [clk] -i~chan Cup];

if (colid -- 0 66 width - 1) 1
ochanr_ring Cclk] - o chan Cdown];
ichan__ring [elk] - i,_chan (up];

if(colid -- width - 1 66 width > 1){
oRchank_ringjcik] - o_chantdown);
i,.chan~ringlclk] = ichanlleft];

ringid linid;

else(
/* odd rows/
if(colid >0 G& colid < width - 1)(

o~chankring(Eclk) - a chan [left];
icqhan ring (elk] - i,_chan (right];

A-4

Appendix A: mesh ring.c

if (colid -= 0 64 vidth > 1)
o__chan _ring [elk] - a_chan (down];
i -chan-ring(clk] - i,_chantriLght];

if (colid -= 0 && width =1{

o_chan -ring [cik] = a_chan [down];
i -chan -ring(clk] = i-chan~up];

if(colid -= width - 1 GG width > 1){
o_chanring~clk] - a-chan~left];
i -chan -ring[clk] - i,_chari[up];

ringid - linid - colid - 1 + width -colid;

return;
1/* ring mesh *

void
not -connecto(

int dent, header, arc id[2], i-chan-temp;
imt i;

/* Initialize Pathylib
pl~init (OxOffff);

/* Assign PCTs for receiving cells *
pl-rpec.onfigure(0x00001, 0z:00002, 0x00004, OxOOOOS, OzOOOfO);

if(_cellid -- sys wdth*sys-height 11
colid >- width 41 rowid >- height) exit(O);

/* initializing handles *
for(i=0; icmaZ-out; i+4-){
o chan[i] - -1;
i chan~i] - -2;

"* Create connections to other cells
"* for a regular 2-D wrap-around mesh.

/* to left *
if(oolid 1- 0)
dent - cellid - 1;

0 else
dent -cellid + width - 1;

oc-han~leift] - pl~send ac(PLGATMO, 3M, &dent, 1);
pl~sendi (PL!GATZO, right);
plsendi (PL GATb0, _cellid + 1);
/* to right */
if(oolid I- width - 1)
dent =- cellid + 1;

else
dest - cellid - width + 1;

oý.-han[rightj - p1 _send oc(PLGATbO, XR, &dent, 1);
plsendi (P]L GTZO, left);
p1,_endi (PFL GA2O, - (_pallid + 1);
/* to up */
if(rowid 1- 0)

A-5

Appendix A: mesh-ring.c

dest -_cellid - ays_vidth;
else

dest -_cellid + syavwidth*(height - 1);
o chan (up] - p1_send o-c(PLGATEO, YU, 4dest, 1);
pluendi (FL GATEO, do~wn) ;
pisendi (FLGATEO, _cellid + 1);
/* to down */
if(rowid I= height - 1)

dest -_cellid + sys width;
else

dest =- cellid - syswvidth* (height - 1);
o chan Idown] - piýsend oc (PL GATEO, YD, Gdest, 1);
pisendi (FL GATEO, up);.
plsendi(FLGATEO, -(_cellid + 1);

*accept four connections from other cells

i-chan temp - plrecvc (FL GATE1, &header);
src idlO) - pI,_recvi(P3L GATZI);
arc i 3d~li - plrecvi(PL GATIC1);
assign chan(i chan, i-cian temp. arc-id);
i -chan temp - pI,_recvý_oc (L GATE1, &header);
arc id[0] -plrecvi(PL GATE1);
arc id(l] - plrecvi (FL GAT=);
assi.gn_chan (i_chan, i-chan-temp. arc id);
i chap temp - p1_-reowý cc(FLGATZ1, &header);
arc idto GlrciP._AT1);
arc [1 3dl] a pl,.recvi (FL CAM~);
assign_chan (i,_chan, i~chantemp, arc id);
i chan temp = p1_recvý_oc (PFLGATE1, &header);
arc id[0] - plrecvi(FL _GATM1);
arc id[l] - plrecvi (FLt_GATnl);
assilgn chan (ichan, i~chan _temp, arc id);

1/* ash connt ~

*Assign coming-connection handles to proper
*array components.

void
assign chan (ichan, iantamp, aid)
int i chant[], i,.char tamp;
mnt sidE!;

*Accept connections from iWarp, cells

/* from left 5

if((aid~l [- - (clI~d) It Isid[1 (I -(_ellid + width))
&Gsid(0] -- left)
fiohan~left] - i~chank.temp; return;)

/* from right */
if((sid(l] - cellid + 2 if sid(1j - -cellid - width + 2)

&a sid[Ol1 -Z right)
(ichan [right] - icqhantemp; return;)

/* from UP */

if((sid(1] - -(oelld - syis width + 1) 11 sid(i-
-(cellid + sayswidkh*(height-l) + 1)) AS sid[O) - up)

(i chan [up] -iý.chazi tamp; return;)
/* fro= down 5

A-6

AP-Pendix A: mesh-ring.c

if((sid(1] - _.pallid + sys width + 1 11 sid[1] mm

-cellid - sys width*(hoight-1) + 1) iisid[O] mdown)

jichan [dow] i-ichan _temp; return;)
roturn;
) * assign chan=

A-7

Appendix A: inain.c

*An iWarp Cell program.

*A wain program showing how to use parallel programming tools
*to do a weighted differencing of images using an iWarp array.

*Author: John Lou, Code 761
*Last modified: July 22, 1992

#include "main .h"

#define mimag' 2 /* maximum number of images *
#define imagdim 128 /* image linear dimension */
#define arydim 8 /* iWarp array linear dimension *
#define nrow cell 16 /* maximum rows for this cell *

void
main(0

struct iwcfg cfg;
fmatrix imaglmimag];
imatrix nrow lao;
Lnt i, j, ctO- ;
float of, me [mimag, exe-time;

/* get iWarp array configuration *
getofg(&ofg);

/* Set up iWarp array network

-cellid - ctg.oe3.lid;
sys height - cfg.height, eye-width - cfg.vidth;
height = ays_ height/2, width - sys width/2;
noells - height*width;

/* Initialize rowid and colid *
my_ýids ();

/* Initialize PatbLib and set up a mesh connection ~
mesh ringo4;

/* End of network setup

* The weighted differencing scheme contains the
* following steps:

* 1) scatter the 2-D data array onto the iWazp array.
* 2) nezzmalize each Line of imag data.
* 3) compute correlation coefficient of a pair of images.
* 4) compute weighted difference.

nrow loc - (imatrix) malloc (sizeof (ivector) *height);
for~imO-; icheight; i++)

A-8

Appendix A: maln. c

nrow-loc (i] - (ivector) malloc (siteof (int) *vidth);

/* scatter input images*1
for (irnO; i~mimag; i++)(

imag[i] - (fmatzix) malloc(sizeof(fvector)*nrow call);
for(j-O; j<nrow-cell; j++)

imagli](j] - (float *) inalloc(sizeof(float)*imagdim);
scatter (imag [i], nravljoc, imagdim, imagdim);

/* normalize each line of image data *
for(inO; i~mimag; i++)

normal line (imag[ij, nrow-lac~rowid] Ccalid], imagdim);

/* compute correlation coefficient and sum *
/* comipute average */
for (i=O; i-eimng; i++)(

me~i] - sumf(imag~i], nrov~locjrovid] (colid], imagdim);
gsianf(&Ms~i], 1, 0, 0);

if((cellid-wO)
for (imO; i~admag; i++) me [i] - me [i] /(imagdim*imagdim);

greplicf(wm, 2);
/* compute covariance *
cf - covar(imag[OJ, imag~l], nrov loc[rowid] [colid],

imagdim, me[O], as~li);
gsumf(&cf, 1, 0, 0);
greplicf(&mcf, 1);

/* perform weighted differencing *
wdiflimag[OJ, imag~l], nrow-loc~rowid] (colid], imagdim, cf);

/* gather and output weighted, differenced image *
gather (imag [01, nrow._lc, imagdim);

exit (0);

/ * main *

A-9

Public reporting burden icr this collection of Information Is estimated to average 1 hour per response. including the time for revieviing Instructions. esoching eacstIng data sources. gathering and
maintaining tltdala needed, and canmultng and rewtewlng the collection of Information. Send comrments regarding this burden estimate or any otheruspecit ofthis collection of Intfornataon. Including

fugelorsfreducingllils burderkto Washington Headquarters Servces, Directoratefor Information Operations and Reports, l215Jeafferson Davis Highway. Suite 1204. Ahlington. VA 22202-4302.
and to the Oftie of MwAgermeni and Budget. Paperworkc Reducto Project (070"-188), Washington. DC 20503.
1. AGENCY USE ONLY "Ma blnl 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

ISeptember 1992 Final
4. TITLE AND SUBliTTU 5. FUNDING NUMBERS

APPLICATIONS DEVELOPMENT ON THE INTEL iWARP SYSTEM WPE: D604507N

a. AfTHOR(S)

J. Z. LOU
7. PERFORMING ORGANIZATION NAMVE(S) AND ADDRESS(ES) 6. PERFORMING ORGANIZATION

Naval Command, Control and Ocean Surveillance Center (NCCOSC) REPORT NUMBER

RDT&E Division (NRaD) NRaJ) TD 2381
San Diego, CA 92152-5000

9. SPONSORINGJMNIOWRING AGBNCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGJMNITORING

Office of Naval Technology Naval Sea Systems Command AEC EOTNME

Office of the Chief of Naval Research Washington, DC 20362
Arlington, VA 22217

11. SUPPL.EMENTARY NOTES

12L DISTRIBUTlONWAVAILABlI~rY STATEMENT M2. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT Wafuknin 200 ww*d)

This report discusses the development of parallel programming tools, mathematical tools, and signal and image
processing applications on the Intel i~arp system. The report begins with a discussion on parallel processing for signal and
image processing. Some issues related to parallel programming on the iWarp system are discussed. The report presents
algorithms and implementations of parallel programming tools on the i~arp systemn. The report discusses mapping
applications to the iWarp system using these programming tools. The applications discussed in this report include
two-dimensional fast Fourier transform (2-D) FFT), two-dimensional convolution, a few matrix computation algorithms, two
image processing algorithms, and a neural network algorithm. Performance results for the 2-1) FTT, matrix factorization
algorithms, a linear triangular system algorithm, and a multispectral weighted differencing algorithm are presented and
analyzed.

14. SUS.ECT TERMS I& NUMBER OF PAGES

Intel iWarp System 50
parallel processing for Signal and image processing I& PRIE" OC

17. SECURITY CLASSIFICATION 18. SEDURffY CLSS*MIATMO 19. SECURITY CLASSIFICATION 2D Uh11ITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED) UNCLASSIFIED SAME AS REPORT

NSN 7640.1-UD.U0O S&udid ftm 2W ""MNT

UNaLAssEMED

Zala NMAE OF RESFONGIULE OME 21b. TapmN 0-AAcWM OFMIc WMOL

J. Z. LOU (619) 55343941 Code 761

UNCLASSIFIED

INITIAL DISTRIBUTION

Code 0012 Patent Counsel (1)
Code 144 V. Ware (1)
Code 402 R. A. Wasilausky (1)
Code 412 M. Gherrity (1)
Code 70 E. Shutters (1)
Code 7304 B. Marsh (1)
Code 76 J. Wangler (1)
Code 7601 K. Bromley (1)
Code 761 G. Byramn (10)
Code 761 J. Lou (20)
Code 952B GIDEP Office (1)
Code 961 Archive/Stock (6)
Code 964B Library (2)

Defense Technical Information Center
Alexandria, VA 22304-6145 (4)

NCCOSC Washington Liaison Office
Washington, DC 20363-5100

Center for Naval Analyses
Alexandria, VA 22302-0268

Navy Acquisition, Research & Development
Information Center (NARDIC)

Washington, DC 20360-5000

Naval Air Warfare Center
Aircraft Division
Warminster, PA 18974-5000 (6)

